

# Small Wind Systems for Rural Energy Supply

Small Wind Systems Tutorial Village Power Conference Workshop



# 2 Billion People in the Dark

#### The Rural Electrification Problem

- ~ 2 Billion People in the World without Electric Service (And Growing!)
- Full Electrification with Grid-Extension is Not Economically Feasible
- Diesel Stations Work
   Poorly for Low Loads and
   are Very Sensitive to
   Quality of Maintenance







## Village Power: A Time For Change

- Renewable energy and electronics technologies have matured significantly over the last two decades
- Decentralized systems are starting to make an impact

China: 150,000 small wind turbines installed

Mexico: 50,000 PV home systems

Nepal: 700 micro-hydro systems installed

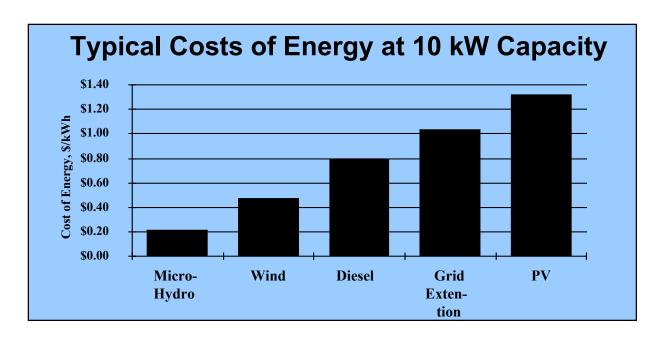
- Decentralized systems offer the prospect of lowering "cost of service" closer to "ability to pay", improving the economic viability (ie, lower subsidies required)
- Numerous renewable energy system configurations available to match resources, applications, and level of service requirements



## **Modern Small Wind Turbines**

### High Tech, High Reliability, Low Maintenance

- Products from 400 W –50 kW
- TechnicallySophisticated
- Only 2-3 Moving Parts
- Passive Controls
- Rugged and Reliable
- Very Low Maintenance Requirements



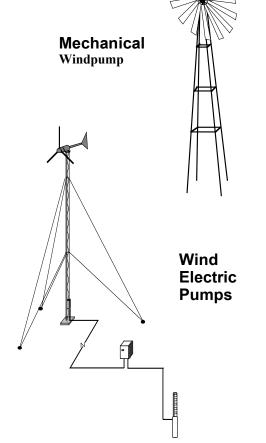



(Not to scale)

## **Modern Small Wind Turbines:**

### A Least-Cost Option for Small Power






" With reasonable assumptions concerning discount rates, capacity factors, and fuel costs, micro-hydro and wind turbines can have the lowest life cycle costs in locations where the resource is sufficient."

Fueling Development: Energy Technologies for Developing Countries, April,1992 U.S. Office of Technology Assessment

# Village Power: Potable Water

- Drinking water for people and livestock
- Using underground water solves common health problems
- Creating a village water tap eliminates need to carry water from distant sources
- Energy requirement is proportional to population served and pumping height
- Typical size: 1 kW : 200 people
- Water storage: 3 7 days



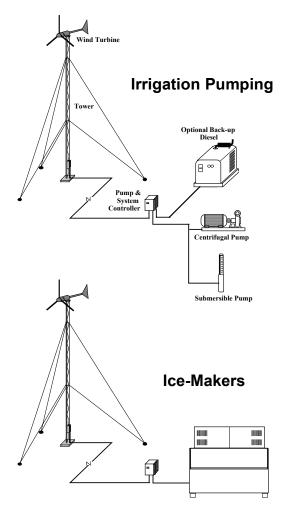


## Water for People and Livestock

### **Community Water Supply: Niama, Morocco**

- Equipment: Two Sites: (2)10 kW Wind Turbines; 18 & 24 m Towers; 15 & 26 Stage Submersible Pumps
- Performance: 70 m³ & 30m³ of Water per Day
- Cost: ~\$100,000, Including Tech. Assist.
   and Training, US-AID Funded
- Installation: February, 1990
- Results: Supplies 4,000 People with 220% More Water Than Original Diesel Pumps. Population Decline has been Reversed.










# Village Power: Productive Uses

- Uses of energy that specifically increase income: irrigation, agroprocessing, ice-making, etc.
- Excellent foundation for electrification: increases income and chances for cost recovery
- Economic incentive for sustainability
- Requires more energy than drinking water or preelectrification, so small wind systems are an attractive technology choice
- Typical size: 1 kW : 10 people

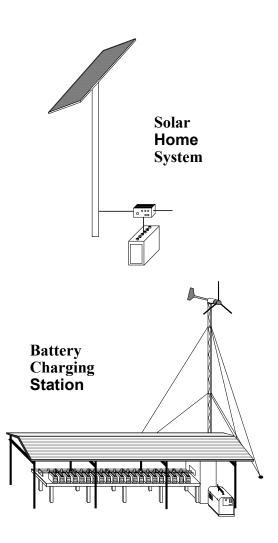




## **Productive Uses**

#### Small Plot Irrigation: Oesao, Timor, Indonesia

- Equipment: 1.5 kW Wind Turbine with 18m Tower; 10 Stage Pump
- ◆ Performance: ~ 150 m³ of Water per Day
- **◆ Cost:** ~\$11,000
- ◆ Installation: July, 1992
- Results: ~ 25 Additional Systems Installed, JICA & US-AID Funding








## Village Power: Pre-Electrification

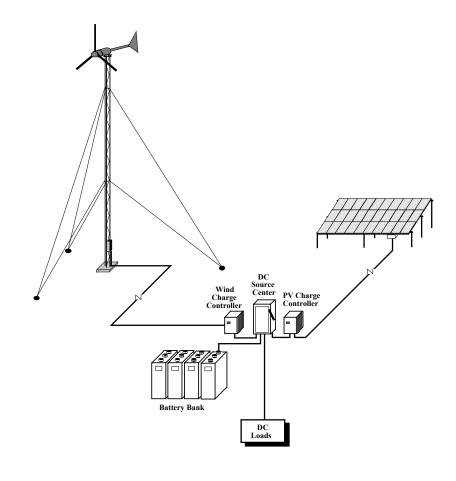
- Provides lighting and entertainment: services that are highly valued
- Replaces existing household expenditures for kerosene, candles, and dry-cell batteries
- All direct current (DC), no grid
- Lighting done with high efficiency florescent bulbs
- Very small installed capacity: 25 120 Watts / household
- Solar home systems are becoming common
- Wind home systems and wind battery charging stations are emerging





## **Entry-Level Electrification**

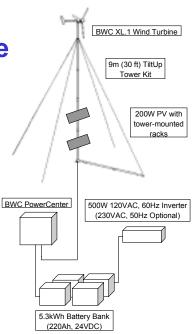
#### **Battery Charging Station: Tomenas, Timor, Indonesia**


- Equipment: 7.5 kW BWC Wind Turbine with 30m Tower
- Performance: Charges batteries for ~40 homes, plus powers productive uses (freezers, shop tools)
- **◆ Cost:** ~\$60,000
- Installation: 1997
- Results: Sustainable electrification which costs each family ~\$2.40 per month. One of ~15 similar projects under WIND project
- Contact: Peter Williams, Winrock Int'l, Tel: 703-525-9430





## Village Power: Small Hybrids


- Provide facility power (school, clinic, etc.) or multiple home electrification
- AC output from inverter
- Wind & solar resources complement each other seasonally
- Often there is no back-up generator
- Sometimes replaces or supplements "portable" generators
- Typical Size: 1.5 kW, for school

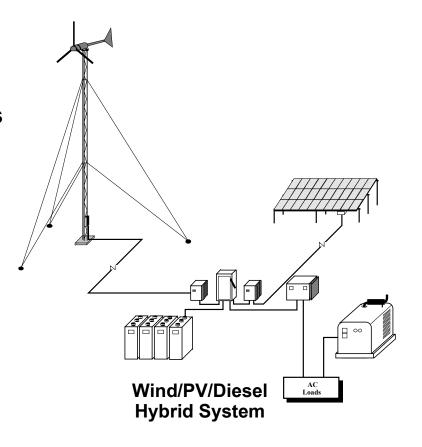




## 1.2 kW Wind/Solar Hybrid System

- Based on advanced technology small wind turbine
- Install: 2 people, 3 hours, no concrete or special tools
- 3 7 AC kWh per day
- UPS shippable
- \* ~ \$4,000 for complete system (~ \$2,800 w/o Solar)






1 kW Wind 0.2 kW Solar 30' Tilt Tower 5.3 kWh Battery 0.5 kW Inverter



## Village Power: Mini-Grid Electrification

- Provides "grid quality" AC power
- Reliable power delivery due to battery storage and back-up generation
- Allows use of standard AC appliances, including refrigerators
- Modular architecture allows multiple turbines and other generating sources, such as solar
- Typical size: 10 kW : 20 homes
- Provides 24 hour per day power with diesel run time reduced to as little as 10%
- Renewables typically supply 60 -85% of the energy





# **Chile Regional Electrification**

### Wind/Diesel Favored Over Diesel-Only

- Collaboration Between CNE, Regional Governments, NREL, and NRECA
- 1997: Region IX Pilot Projects
- 2000: Region X Pilot Projects
- 2000-2002: Regional Implementation: Isla de Chiloe
  - ~ Thirty 3-40 kW Wind/Diesel Systems



1997



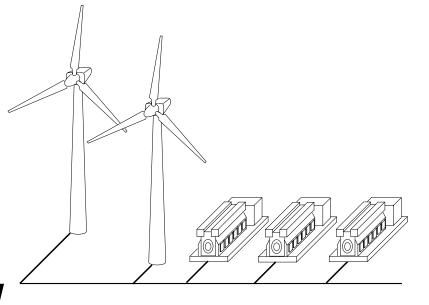




# **Mexico Village Electrification**

### San Juanico, Baja California Sur

- Equipment: (10) BWC 7.5 kW Wind Turbines with 37 m Towers; 17 kW PV; 420 kWh Battery, 70 kW Inverter
- Performance: ~ 500 kWh / Day; Winds Average ~ 5 m/s
- **♦ Cost:** ~ \$1,000,000
- Installation: March, 1999
- Results: USIJI Joint Implementation Project. Participants are CFE, BCS State, Arizona Public Service, US-DOE, & US-AID/Mexico. Analyses by NREL
  - Contact: Dr. Peter Johnston, APS,


Tel: 602-250-3020





## Village Power: Fuel-Saver System

- AC-Bus architecture
- Retrofits to existing diesel mini-grid systems
- Mostly use AC type, induction generator wind turbines of larger sizes
- Sophisticated controls and dump loads allow high wind penetration
- Typical Size: 50 kW 500 kW



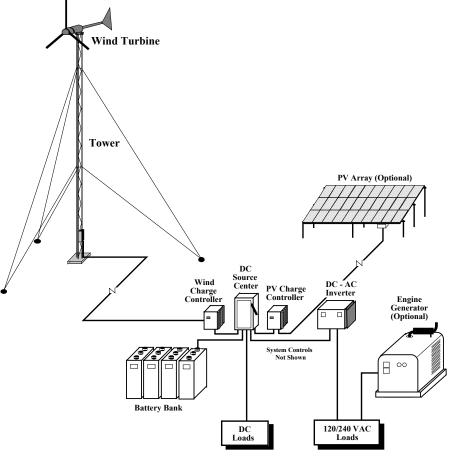
Wind/Diesel System



# **Saving Diesel Fuel**

### Kotzebue, Alaska

- Equipment: (10) AOC 50 kW Wind Turbines with 24 m Towers
- Performance: ~ 3,200 kWh / Day; Winds Average ~ 5.4 m/s
- Cost: ~ \$1,600,000 (High installation costs due to harsh conditions)
- ♦ Installation: 1997 (3) & 2000 (7)
- Results: Wind produces 1200
   MWh / Year, ~ 6% of Village Load.
   System being expanded.
- Contact: Brad Reeve, Kotzebue Electric, Tel: 907-442-3491








### The New Way to Electrify Villages

- Lower costs than grid extension in many cases
- Autonomous system power often more reliable than grid power
- Much higher service level than "6 hours of diesel each night"
- Very modular
- Standardized packages
- Battery watering is the major operational burden
- Full automation relatively easy





#### Wind Turbines and Diesels are Complimentary:

| Conital Coat          | I I! a.la   |               |
|-----------------------|-------------|---------------|
| <u>Characteristic</u> | <u>Wind</u> | <u>Diesel</u> |

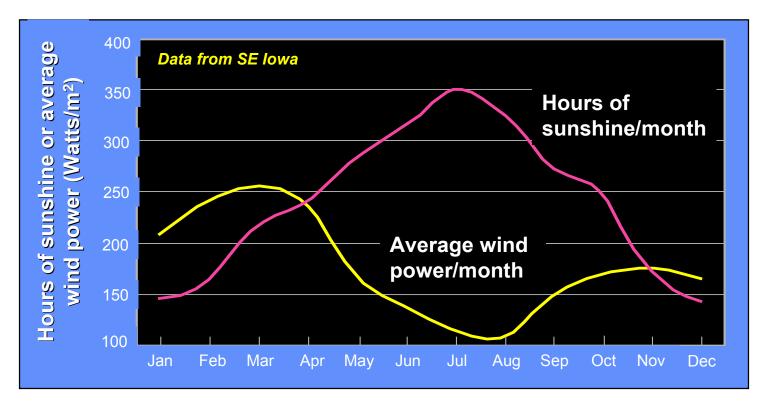
Capital Cost High Low

Operating Cost Low High

Logistics Burden Low High

Maintenance Req'mts Low High

Available On-Demand No Yes




Together, They Provide a
More Reliable and CostEffective Power System
Than is Possible With
Either Wind or Diesel
Alone





 Wind and Solar Often have Seasonally Complimentary Resources





- ~ 75% of the World has sufficient wind for small wind turbines
- ~ 100% of the World has either sufficient wind or sufficient solar, or both

Wind and Solar Hybrids can Provide Effective Power Generation for Small Systems Virtually Everywhere!



## **China Rural Electrification**

### World's Largest Market for Small Wind

- 150,000 Existing Systems
- Wind/PV Hybrid Home Systems
   ... SETC / World Bank Project:
   30,000 New Hybrid Systems
- SDPC "Brightness
   Engineering" Village Power
   Program ... ~ 35,000 5-10 kW
   Wind/Diesel Systems
- Foreign Cooperation to Improve Technology ... Hua De (donor-aid) & Xiangtan Bergey Windpower Ltd (private sector JV)





# Small Wind is a Powerful "Weapon" in the War on Poverty

- ◆ PV Solar Home Systems are Not a Silver Bullet for Rural Electrification ... Consumers Often Want More Than ~ 200 Wh/Day, Direct Current
- For Low Load Applications (< 10 kWh/day),</li>
   Wind/PV Hybrid Systems are Very Attractive
- For Larger Applications, Wind/Diesel Hybrids are Very Attractive
- Bilateral and Multilateral Finance and Market Stimulation Programs Should be Best Service at Least Cost ... Currently Too Much Technology Bias towards Solar

